跳到主要內容區塊

國立臺灣大學物理學系

教師(領域別)

朱國瑞


姓名   朱國瑞
  Kwo-Ray Chu
職稱   特聘研究講座教授
學歷   1972年康乃爾大學應用物理博士
辦公室   710
聯絡電話   02-3366-5113 ; 02-2365-7005
電子郵件   krchu@yahoo.com.tw
個人網頁  

 

主要經歷
  • 1973-1977: Research Scientist, Science Applications International Corporation, Virginia, U.S.A.
  • 1977-1983: Supervisory Research Physicist, U.S. Naval Research Laboratory, Washington, D.C.
  • 1983-2010: 清華大學物理系教授/特聘講座
  • 2010-present: 臺灣大學物理系特聘研究講座
榮譽
  1. 「國科會五十科學成就」 (2009).
  2.  臺灣大學「傑出校友」(2007).
  3.  斐陶斐榮譽學會「傑出成就獎」(2006).
  4.  行政院「傑出科技榮譽獎」(2004).
  5. 「總統科學獎」 (2003).
  6.  中央研究院院士 (2002).
  7.  教育部「理科學術獎」(2002).
  8.  教育部「國家講座」(1997).
  9.  國科會「傑出研究獎」(1986-1995).
  10.  中華民國物理學會「會士」(1994年).
  11.  Plasma Science and Application Award, IEEE Nuclear and Plasma Sciences Society (2001).
  12.  K J Button Medal and Prize, British Institute of Physics (2001).
  13.  Fellow, IEEE (1997).
  14.  Fellow, American Physical Society (1983).
教學與研究領域

專長:離子體物理;電磁輻射機制。
研究重點:電子迴旋脈射(Electron Cyclotron Maser (ECM)。ECM係靜磁場中迴旋的電子,基於相對論效應所產生的受激輻射(stimulated emission)現象。ECM輻射將電磁波的頻段及功率推進到前所未有的新境界,在電磁波頻譜的毫米及次毫米波段,佔有獨特的地位。ECM輻射於核融合加熱、先進雷達、粒子加速、太空探測、材料處理、物性偵測及頻譜學等應用,發揮了高度的實用價值,同時輻射機制本身也具有高度的研究價值,為應用物理學門帶來了許多新的研究題材。
主要工作:

(1)以相對論動力方程式,深入探討電子迴旋脈射到中的數學及物理問題,發現迴旋不穩定模式中,快、慢波之間的競爭關係,澄清了一個長久以來懸而未決的迴旋波激發機制問題。

(2)發展非線性迴旋速調放大理論,完成一個功率超越state-of-the-art百倍的30 MW、10 GHz迴旋速調放大器設計,作為下一代加速器的RF source,於馬利蘭大學獲得實驗印證。

(3)發明並研究成功Ka頻段迴旋行波放大器,於頻寬、功率、增益及效率四個指標上,均超越屹立三十餘年的國際記錄,提供了開發新一代遠距離,高解析度雷達系統的關鍵技術,已應用於美國太空站雷達性能的提昇。

(4)配合國家大型計畫,將研究成果付諸實用,研製成功同步加速器的高頻系統及高功率毫米波發射器,啟動國內的微波管工業,大幅提升國防雷達系統的自主能力。

(5)2010年轉任台大後,開展高功率兆赫波輻射機制研究.

代表著作
  1. S. H. Kao, C. C. Chiu, K. F. Pao, and K. R. Chu, “Competition between Harmonic Cyclotron Maser Interactions in the Terahertz Regime,” Phys. Rev. Lett. 107, 135101 (2011).
  2. C. C. Chiu, C. Y. Tsai, and S. H. Kao, K. R. Chu, L. R. Barnett and N. C. Luhmann, Jr., “Study of a High-Order-Mode Gyrotron Traveling-Wave Amplifier,” Phys. Plasmas 17, 113104 (2010).
  3. L. R. Barnett, N. C. Luhmann Jr., C. C. Chiu, and K. R. Chu, “Relativistic Performance Analysis of an Advanced High-Current-Density Magnetron Injection Gun, ” Phys. Plasmas 16, 093111 (2009).
  4. C. C. Chiu, K. F. Pao, Y. C. Yan, and K. R. Chu, “Nonlinearly Driven Oscillations in the Gyrotron Traveling-Wave Amplifier,” Phys. Plasmas 15, 123109 (2008).
  5. K. F. Pao, C. T. Fan, T. H. Chang, C. C. Chiu, and K. R. Chu, “Selective Suppression of High Order Axial Modes in the Gyrotron Backward-Wave Oscillator,” Phys. Plasmas 14, 053108 (2007).
  6. T. H. Chang, C. T. Fan, K. F. Pao, S. H. Chen, and K. R. Chu, “Stability and Tunability of the Gyrotron Backward-Wave Oscillator,” Applied Phys. Lett. 90, 191501 (2007).
  7. K. F. Pao, T. H. Chang, C. T. Fan, S. H. Chen, C. F. Yu, and K. R. Chu, "Dynamics of Mode Competition in the Gyrotron Backward-Wave Oscillator," Phys. Rev. Lett. 95, 185101 (2005).
  8. K. R. Chu, "The Electron Cyclotron Maser," Rev. of Modern Phys. 76, 489 (2004).
  9. S. H. Chen, T. H. Chang, K. F. Pao, and K. R. Chu, " Study of Axial Modes in Gyrotron Backward-Wave Oscillators," Phys. Rev. Lett. 89, 268303 (2002).
  10. T. H. Chang, S. H. Chen, L. R. Barnett, and K. R. Chu, "Characterization of Stationary and Non-stationary Behavior of Gyrotron Backward Wave Oscillator," Phys. Rev. Lett. 87, 064802 (2001).
  11. S. H. Chen, K. R. Chu, and T. H. Chang, "Saturated Behavior of Gyrotron Backward-Wave Oscillator," Phys. Rev. Lett. 85, 2633 (2000).
  12. K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, and T. T. Yang, "An Ultra High Gain Gyrotron Traveling Wave Amplifier," Phys. Rev. Lett. 81, 4760 (1998).
  13. K. R. Chu, H. Guo, and V. L. Granatstein, "Theory of the Harmonic Multiplying Gyrotron Traveling Wave Amplifier," Phys. Rev. Lett. 78, 4661 (1997).
  14. K. R. Chu, L. R. Barnett, H. Y. Chen, S. H. Chen, Ch. Wang, Y. S. Yeh, Y. C. Tsai, T. T. Yang, and T. Y. Dawn, "Stabilization of Absolute Instabilities in the Gyrotron Travelling Wave Amplifier," Phys. Rev. Lett. 74, 1103 (1995).
  15. C. S. Kou, S. H. Chen, L. R. Barnett, H.Y. Chen, and K. R. Chu, "Experiments Study of an Injection Locked Gyrotron Backwave Wave Oscillator," Phys. Rev. Lett. 70, 924 (1993).
  16. K. R. Chu and A. T. Lin, "Harmonic Gyroresonance of Electrons in Combined Helical Wiggler and Axial Guide Magnetic Fields," Phys. Rev. Lett. 67, 3235 (1991).
  17. L. R. Barnett, L. H. Chang, H. Y. Chen, K. R. Chu, W. K. Lau, and C. C. Tu, "Absolute Instability Competition and Suppression in a Millimeter-Wave Gyrotron Traveling-Wave Amplifier," Phys. Rev. Lett. 63, 1062 (1989).
  18. K. R. Chu and A. T. Lin, "Gain and Bandwidth of the Gyro-TWT and CARM Amplifier," IEEE Trans. Plasma Science PS-16, 90 (1988).
  19. K. R. Chu, V. L. Granatstein, P. E. Latham, W. Lawson, and C. D. Striffier, "A 30 MW gyroklystron Amplifier Design for High Energy Linear Accelerators," IEEE Trans. Plasma Science PS-13, 424 (1985).
  20. Y. Carmel, K. R. Chu, M. E. Read, A. K. Ganguly, D. Dialetis, R. Seeley, J. S. Levine and V. L. Granatstein, "Realization of a Stable and Highly Efficient Gyrotron for Controlled Fusion Research,'' Phys. Rev. Lett. 50, 112 (1983).
  21. Y. Y. Lau and K. R. Chu, "Electron Cyclotron Maser Instability Driven by Loss Cone Distribution,” Phys. Rev. Lett. 50, 243 (1983).
  22. H. Guo, L. Chen, H. Keren, J. L. Hirshfield, S. Y. Park, and K. R. Chu, "Measurement of Gain for Slow Cyclotron Waves on an Annular Electron Beam," Phys. Rev. Lett. 49, 730 (1982).
  23. R. M. Gilgenbach et al. (15 authors), "Heating at the Electron Cyclotron Frequency in the SX-B Tokamak," Phys. Rev. Lett. 44, 647 (1980).
  24. K. R. Chu and J. L. Hirshfield, "Comparative Study of the Azimuthal and Axial Bunching Mechanisms in Electromagnetic Cyclotron Instabilities," Phys. Fluids 21, 461 (1978).
  25. K. R. Chu, "Theory of Electron Cyclotron Maser Interaction in a Cavity at the Harmonic Frequencies," Phys. Fluids 21, 2354 (1978).
  26. K. R. Chu and R. W. Clark, "Dynamical Model for Magnetic Signal Interpretation in Relativistic Electron Beam Heated Plasmas," Phys. Rev. Lett. 38, 704 (1977).
  27. W. M. Manheimer, K. R. Chu, E. Ott and J. P. Boris, "Marginal Stability Calculation of Electron Temperature Profiles in Tokamaks," Phys. Rev. Lett. 37, 286 (1975).
  28. K. R. Chu, R. W. Clark, M. Lampe, P. C. Liewer and W. M. Manheimer, "Ion Heating by Expansion of Beam-Heated Plasma," Phys. Rev. Lett. 35, 94 (1975).
  29. C. A. Kapetanakos, W. M. Black, and K. R. Chu, "Plasma Heating by a Rotating Relativistic Electron Beam," Phys. Rev. Lett. 34, 1156 (1975).
  30. K. R. Chu, N. Rostoker, "Interaction of a Rotational Relativistic Electron Beam with a Magnetized Plasma," Phys. Fluids 17, 813 (1974).
  31. K. R. Chu, N. Rostoker, "Relativistic Electron Beam Neutralization in a Dense Magnetized Plasma," Phys. Fluids 16, 1472 (1973).