PhD Qualifying Examination: Classical Electrodynamics

Instruction: Each question carries equal 25 marks, the marks for individual parts are

marked in bold faced box |...], please state your calculations clearly.
1. e Starting with electrostatic potential for a charge distribution p(r):
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to prove Green’s reciprocal relation [5]:
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Then use it to prove that an empty sphere with charge spread uniformly over its

surface to prove this “mean value theorem”:
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the average of ¢(r) over a spherical surface S that encloses a charge-free volume
is equal to the potential at the center of the sphere. [10]

e Show that we can also obtain same mean value theorem above by using Green’s
second identity in vector calculus:
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where f, g are arbitrary functions. [5]

e Using the result above to give an alternative derivation of Earnshaw’s theo-
rem: The scalar ¢(r) in a finite, charge free region of space R takes its maxi-
mum,/minimum on the boundary of R. [5].

2. e Use the formula for electrostatic total energy:
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to find the interaction energy Vg between two identical insulating spheres of radius
R and charge @) distributed uniformly over their surfaces. Their center to center
separation is d > 2R. Comment on the dependence of Vg on R. [842]

e Instead of being Coulombic, suppose the electrostatic potential is produced by:

o(r) = ——f(r]). (6)
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— Calculate the potential produced by an infinite flat sheet at z = 0 with
uniform charge/area o. [10]
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— Show that the associated electric field is [5]:

E(z) = 2 2f(2)z. (7)
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3. (a) Apply Green’s second identity:
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and set ¢ = G(y,x) and 1 = G(z,x). Using V2G(y,x) = —6®)(x —y) to express
the difference G(y,z) — G(z,y) in terms of an integral over the surface S = 9V
[5]

(b) Show that a Green’s function Gp(x,y) with Dirichlet boundary conditions Gp(x,y) =
0 for y € OV must be symmetric in x and y. [5]

(c) Argue that ny - VyGp(x,y) = —8*(x—y) for x — OV and y € V. For the case
X #y, you can use the Dirichlet boundary condition for Gp(x,y). To understand
the special case x — y, integrate the above expression over all y € 9V before
performing the limit.[5]

(d) Consider the Neumann boundary condition n, - V,Gn(x,y) = —F(y) for y € oV
with §,. d*z F(x) = 1. Show that Gy(x,y) is not symmetric in x and y in
general. Construct a Green’s function Gy (x,y) = Gny(x,y) + H(y) + K(x) that
is symmetric in x and y. What properties must H and K have? [4]+[4]+[2]

4. It is true (but not obvious) that any vector field V(r) which satisfies V- V(r) = 0 can
be written uniquely in the form

V(r) = T(r) + P(r) = Li(r) + V x Ly(r),

where L = —ir x V is the angular momentum operator and v (r) and (r) are scalar
fields. T'(r) = Ly)(r) is called a toroidal field and P(r) = V x Ly(r) is called a poloidal
field. This decomposition is widely used in laboratory plasma physics.

(a) Confirm that V- V(r) =0. [5]

(b) Show that a poloidal current density generates a toroidal magnetic field and vice
versa. [5]

(c) Show that B(r) is toroidal for a toroidal solenoid. [5]

(d) Suppose there is no current in a finite volume V. Show that V?B(r) = 0 in V.
[5]

(e) Show that A(r) in the Coulomb gauge is purely toroidal in V' when ¢ (r) and ~(r)
are chosen so that V2B(r) =0 in V. [5]



