
PhD Qualifying Examination: Classical Electrodynamics

Instruction: Each question carries equal 25 marks, the marks for individual parts are
marked in bold faced box [. . . ], please state your calculations clearly.

1. • Starting with electrostatic potential for a charge distribution ρ(r):

φ(r) =
1

4πϵ0

∫
d3r′

ρ(r′)

|r− r′|
(1)

to prove Green’s reciprocal relation [5]:∫
d3rρ1(r)φ2(r) =

∫
d3rρ2(r)φ1(r). (2)

Then use it to prove that an empty sphere with charge spread uniformly over its
surface to prove this “mean value theorem”:

1

4πR2

∫
dSφ(r) = φ(0), (3)

the average of φ(r) over a spherical surface S that encloses a charge-free volume
is equal to the potential at the center of the sphere. [10]

• Show that we can also obtain same mean value theorem above by using Green’s
second identity in vector calculus:∫

V

d3r(f∇2g − g∇2f) =

∫
S

dS · (f∇g − g∇f) (4)

where f, g are arbitrary functions. [5]

• Using the result above to give an alternative derivation of Earnshaw’s theo-
rem: The scalar φ(r) in a finite, charge free region of space R takes its maxi-
mum/minimum on the boundary of R. [5].

2. • Use the formula for electrostatic total energy:

UE =
1

2

∫
d3rρ(r)φ(r) (5)

to find the interaction energy VE between two identical insulating spheres of radius
R and charge Q distributed uniformly over their surfaces. Their center to center
separation is d > 2R. Comment on the dependence of VE on R. [8+2]

• Instead of being Coulombic, suppose the electrostatic potential is produced by:

φ(r) =
q

4πϵ0
f(|r|). (6)

– Calculate the potential produced by an infinite flat sheet at z = 0 with
uniform charge/area σ. [10]
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– Show that the associated electric field is [5]:

E(z) =
σ

2ϵ0
zf(z)ẑ. (7)

3. (a) Apply Green’s second identity:∫
V

d3x
(
ϕ∇2ψ − ψ∇2ϕ

)
=

∮
S=∂V

d2x n̂ · (ϕ∇ψ − ψ∇ϕ) (8)

and set ϕ = G(y,x) and ψ = G(z,x). Using ∇2
xG(y,x) = −δ(3)(x−y) to express

the difference G(y, z)−G(z,y) in terms of an integral over the surface S = ∂V .
[5]

(b) Show that a Green’s functionGD(x,y) with Dirichlet boundary conditionsGD(x,y) =
0 for y ∈ ∂V must be symmetric in x and y. [5]

(c) Argue that ny ·∇yGD(x,y) → −δ2(x−y) for x → ∂V and y ∈ ∂V . For the case
x ̸= y, you can use the Dirichlet boundary condition for GD(x,y). To understand
the special case x → y, integrate the above expression over all y ∈ ∂V before
performing the limit.[5]

(d) Consider the Neumann boundary condition ny ·∇yGN(x,y) = −F (y) for y ∈ ∂V
with

∮
∂V
d2xF (x) = 1. Show that GN(x,y) is not symmetric in x and y in

general. Construct a Green’s function G′
N(x,y) = GN(x,y) +H(y) +K(x) that

is symmetric in x and y. What properties must H and K have? [4]+[4]+[2]

4. It is true (but not obvious) that any vector field V(r) which satisfies ∇ ·V(r) = 0 can
be written uniquely in the form

V(r) = T(r) +P(r) = Lψ(r) +∇× Lγ(r),

where L = −ir ×∇ is the angular momentum operator and ψ(r) and γ(r) are scalar
fields. T(r) = Lψ(r) is called a toroidal field and P(r) = ∇×Lγ(r) is called a poloidal
field. This decomposition is widely used in laboratory plasma physics.

(a) Confirm that ∇ ·V(r) = 0. [5]

(b) Show that a poloidal current density generates a toroidal magnetic field and vice
versa. [5]

(c) Show that B(r) is toroidal for a toroidal solenoid. [5]

(d) Suppose there is no current in a finite volume V . Show that ∇2B(r) = 0 in V .
[5]

(e) Show that A(r) in the Coulomb gauge is purely toroidal in V when ψ(r) and γ(r)
are chosen so that ∇2B(r) = 0 in V . [5]
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